Gas Metrology for Technology Innovation & Sustainable Development

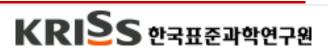
Jin Seog Kim (KRISS) Chair of Gas Analysis WG

Better Standards, Better Life

KRIS

🗲 하구표주과히

Introduction of Gas Metrology


Example of Gas Metrology Application to High Technology for GHG Reduction

KRISS Capability on Gas Metrology

National Metrology Institutes (NMI)


- Highest authority in metrology
- Maintain the national measurement standards
 - Directly traceable to primary standards when NMI realize the SI units of measurement standards
 - Should insure that the measurements are traceable to a primary standards when NMI does not realize the SI units.
- Responsible for disseminating the national measurement standard
- Mission: Increase Competitiveness of National Economy and Quality of Life through Metrology (Technology Innovation & Sustainable Development)

Better Standards, Better Life

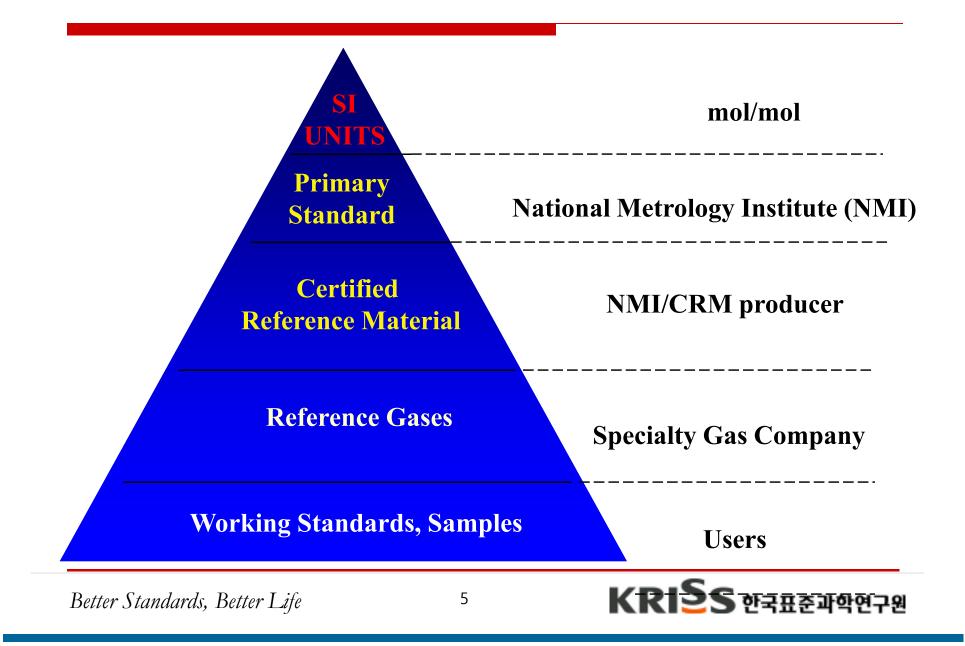
ROLE OF METROLOGY

Over the last decade, there has been a significant increase in the recognition of metrology and the important role it plays in improving

Productivity

Product Quality

Product Defect Reduction

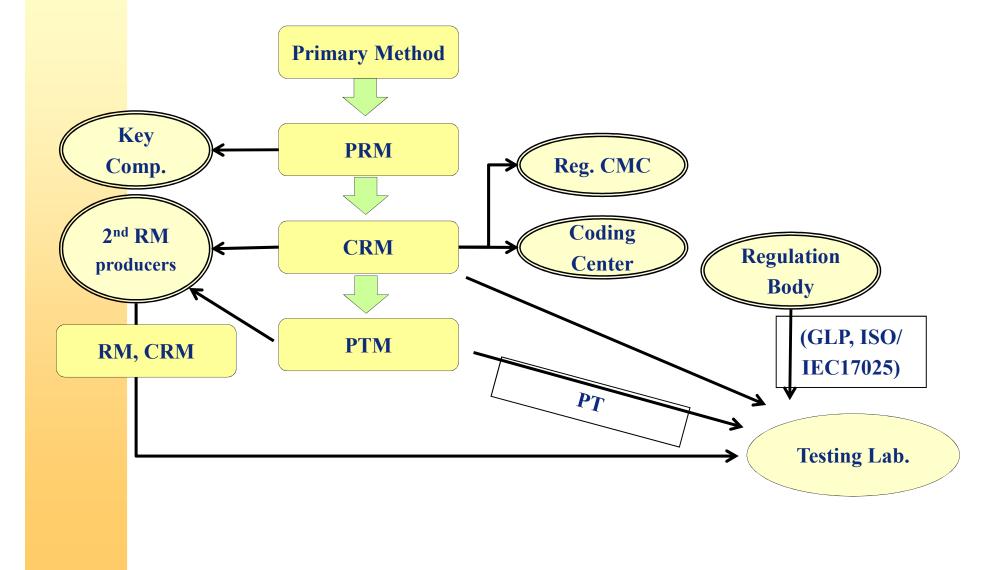

□ Impacts on Global Trade Issue

□ Increase Reliability on Legal Procedure

KRISS 한국표준과학연구원

Better Standards, Better Life

Measurement Hierarchy in Gas Metrology


Gas Metrology

- Gas metrology for Industry and Quality of Life
 - Produce Certified Reference Materials
 - Improve Process Control, Quality Control
 - Precise measurement of Emission,

Global warming, and Indoor air quality

- Gas Metrology for Science (as expert in measurement)
 - Ar mole fraction in air: Air density
 - Ne, Ar, He, C, N atomic weight (~ppm level accuracy)
 - Triple point of gases, Boltzmann constant, Gas constant

Reference Material / National System

Roles of Gas Metrologist for Industry

• CRM development

Environmental Effect : Global warming Working Environmental Condition Process Control for Quality

- Testing services
- Providing PT program
- Education on Gas Analysis
- Development of Analytical system : simple & fast for quantification

Application Areas and Needs of CRM

Object	Application Fields	Needs of CRM
	High Quality Products: Quality control of manufacturing process	Ο
Service to industries	Regulation for trade: RoHS, WEEE, Safety Regulation	000
	New technology: R&D	0
Regulations	Determine the limit for regulation: Toxic chemical producers, Govnt Agency	Δ
	Standards: Procedure, ISO/TC activity, Validation	0
	Testing report: QC, Traceability, Quantification	000
	Ability of Testing Lab: Participate in PT program	00

Target Gas Chemicals for Analysis

- CFCs, PFCs : CF₄, C₂F₆, SF₆, NF₃, Freon, Renewable refrigerants
- Metal Hydrides : SiH₄, PH₃, AsH₃, B₂H₆
- Acids : F₂, Cl₂, HF, HCI, BF₃, HBr, WF₆
- Odors : NH_3 , H_2S etc.
- VOCs : BTX, Acetone, Alcohol, HCOH
- Environment: NO, CO, SO2, O3, Particles, GHG
- Pure Gases : He, N₂, H₂, Ar, N₂O, O₂, Air
- Gases in Liquid, Solid & Biomaterials
- Gases in Products (Lamps, Package, Vacuum, Detectors, Display Pane)

Procedure of Gas Analysis

- Validated procedure
- Calibration of Instrument & Apparatus
- Confirm of Environmental Condition
- Get Gas CRMs
- Comparison of Samples and Gas CRMs
- Evaluation of results
- Report Concentration & its Uncertainty

Instruments for Gas Analysis

```
GC-TCD : inorganic gas
GC-FID : organic gas
GC-SCD : S containing gas mixture
GC-FID-Methanator : CO, CO<sub>2</sub>
GC-MSD : unknown gas identification
GC-ECD : F, Cl chemicals
GC-DID : ppb – ppm
GC-AED : Metallic gas, similar PRM
FTIR, NDIR, CRDS: impurities, CO<sub>2</sub>, CO, CH<sub>4</sub>, N<sub>2</sub>O
Dedicated analyzer: NO<sub>x</sub>, SO<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O etc.
Gas MS : isolated samples, limited amount
IRMS : isotopic ratio
```

Better Standards, Better Life

🕻 하군표준과학

Procedure of Comparison Measurement

□ Making calibration line:

- One point calibration: linear line through origin
- Two points Calib.: linear line
- Multi points Calib.: non-linear lines
- □ Use CRMs with most similar concentration
- □ If matrix is different, correct that effect
- Check repeatability & reproducibility
- Correct drift effect
- Keep good baseline (purity of carrier gas)

Economy of Republic of Korea : 50 year Ago

14

Main Export Products during 1960s and 1970s

[1960s: Raw Materials]

1960

Products % 1 **Iron Ore** 13.0 2 Tungsten 12.6 3 **Raw Silk Thread** 6.7 Coal 4 5.8 5 Squid 5.5 6 Live Fish 4.5 7 Graphite 4.2 8 Wood Board 3.3 9 3.3 Rice 10 **Bristle (hair)** 3.0

Better Standards, Better Life

[1970s: Light industry goods]

1970

	Products	%
1	Textiles	40.8
2	Wood Board	11.0
3	Wig (false hair)	10.8
4	Iron Ore	5.9
5	Electronics	3.5
6	Vegitables	2.3
7	Shoes	2.1
8	Lead & Lead Product	1.6
9	Steel Products	1.5
10	Metal Goods	1.5

KRISS 한국표준과학연구원

Economy of Republic of Korea : Recent

Main Export Products in Present

[2000s: High Tech & Heavy Chemicals]

1Semiconductor15.12Computer8.43Car7.74Petroleum Chemicals5.55Shipbuilding4.86Wireless Goods4.7
2ComputerOn3Car7.74Petroleum Chemicals5.55Shipbuilding4.8
4Petroleum Chemicals5.55Shipbuilding4.8
5Shipbuilding4.8
6Wireless Goods4.7
7Steel Plates2.8
8 Clothes 2.7
9 Synthetic Textiles 2.1
10Electronics2.1

Better Standards, Better Life

	Products	%
1	Semiconductor	10.2
2	Car	10.1
3	Wireless Goods	8.3
4	Shipbuilding	6.8
5	Petroleum Chemicals	6.3
6	Computer	3.9
7	Plat Panel Display	3.8
8	Synthetic Resins	3.4
9	Steel Plates	3.4
10	Automobile Parts	3.1

Economic Growth of Korea

Light Industries
 Heavy & Chemical Industries
 Electronics
 Information & Communication

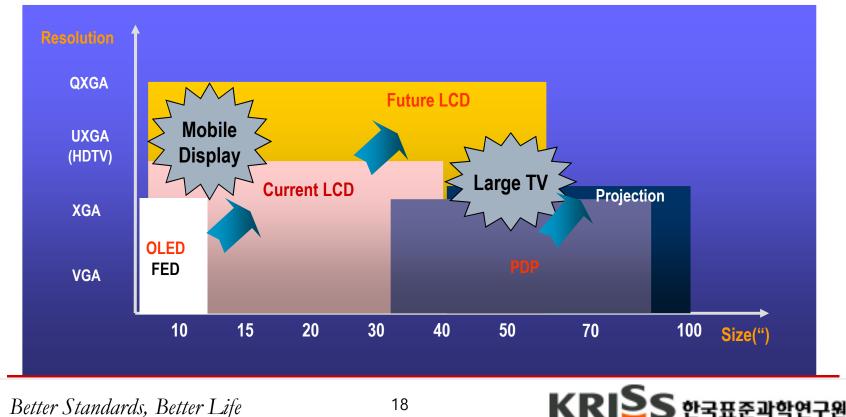
1960-70 1970-80 1980-95 1995-Present

16

Better Standards, Better Life

World Products from Korea

- **DRAM:** World market share **1st (45%)**
- Display Panel: World market share 1st (35%)
- Shipbuilding: World market share 1st (40%)
- \bigcirc **Car:** World market share **6**th
- Iron Plates: World market share 4 %



Evolution of Display Screen

- ► Monitor : From CRT to LCD/LED
- Large Screen TV : competition of LCD & PDP (> 50")
- : LCD & OLED (< 10") ► Mobile

(VGA: 640 x 480, XGA: 1024 x 788, UXGA: 1600 x 1200, QXGA: 2048 x 1536)

18

Better Standards, Better Life

Development of OLED Display

TEFL

19

Large Screen OLED Display

vance 세계최대 40인치-OLED

□Large Screen OLED Display □Thin ~ 30 mm

- amorphous-Si TFT– Large screen
- poly-Si TFT– Long lifetime

KRISS 한국표준과학연구원

Semiconductor Manufacturing Process

Si Growth

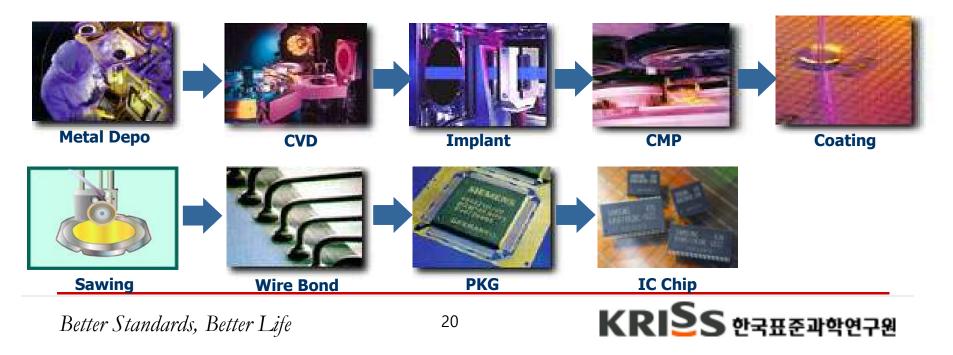
Ingot

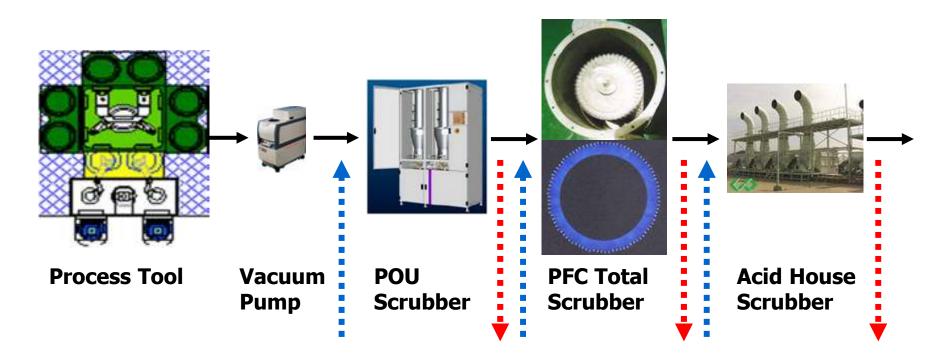
Si Wafer

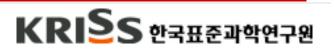
Oxidation

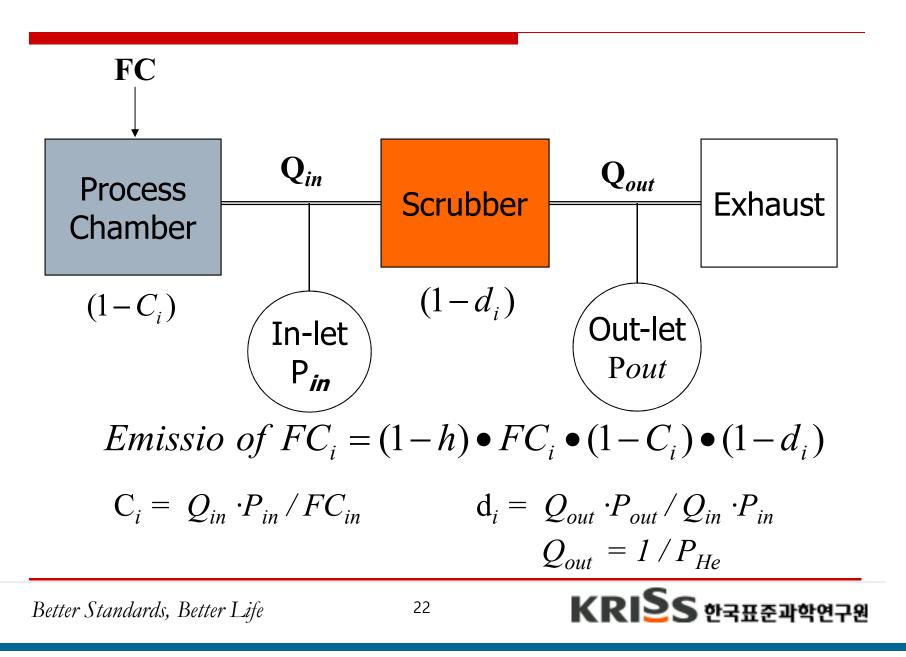
PR Coating

Photo Stepper


Etch


Ashing

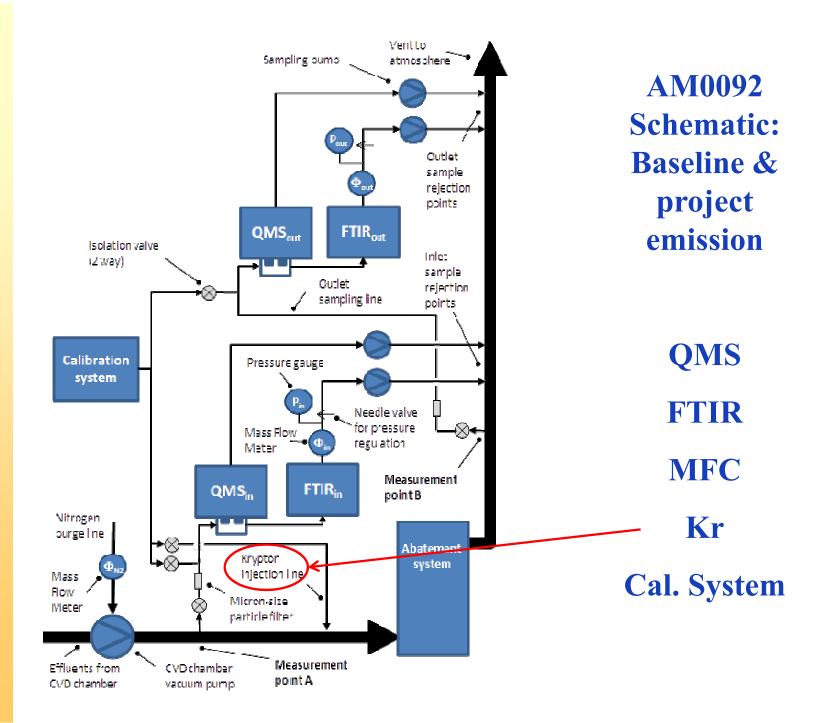

Wet


Exhaust Gas Analysis for the Sustainable Development

Abatement System Efficiency Analysis

Efficiency of PFC Scrubber

Emission Reduction Methodology for PFC & SF₆

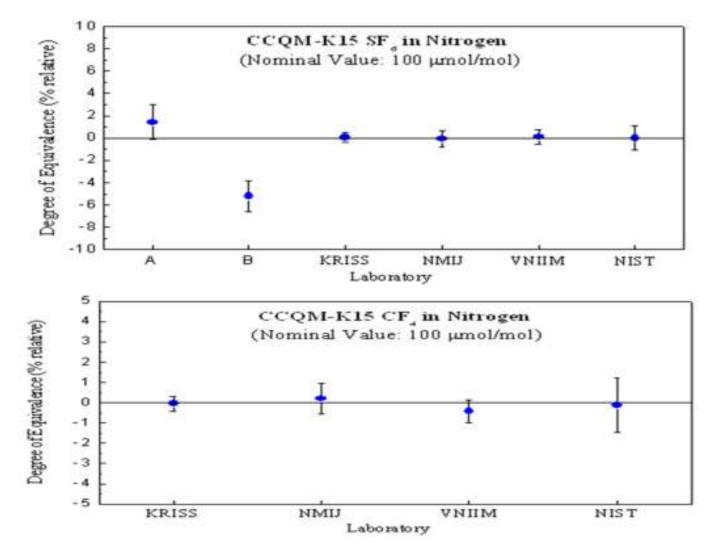

- Validated Procedures
 Approved CDM Methodology by UNFCCC
 - UNFCCC: UN Framework Convention on Climate Change

Korean EPA modified UNFCCC methodology

• Reference Gas Mixtures (CRMs) for calibration & validation

Approved Methodology by UNFCCC

Methodology	Applying Company	Reduction Mechanism	Monitoring Instrument
AM0078	Display Process in LG & Samsung	SF6 Abatement by fuel combustion	QMS, FTIR Annubar Water Analysis
AM0092	Semiconductor in Chartered Semi & Hynix	Substitution of C2F6 with c-C4F8	FTIR QMS(Kr)
AM0096	Semiconductor in Samsung	CF4 Abatement by electrical heater	QMS(He)


Strategy of Quantification

Quantification by QMS with Reference Standard Gas: N_2 , O_2 , CO_2 , Ar, SF_6 , He, Kr, Xe Quantification by FTIR with Reference Standard Gas: CO_2 , CO, SF_6 , NO, SO_2 Quantification by FTIR with Library Information: HF, SiF_4 , SOF₂, SO₂F₂, ... Difficult components: F_2 , Cl_2 (memory effect in QMS)

To support industry on PFC emission

CCQM-K15 (2003)

- ✦ Coordinating Lab: KRISS
- Subatance: $SF_6 \& CF_4$ hundred µmol/mol level

Primary Reference Material

- Purity assessment
 - Molecular weights of source gases (isotopic ratio)
 - Impurity analysis based on final concentration
- Accurate mixing (Gravimetry)
- Internal consistency by comparison (4 cyl. at a time)
- Stability test (2 cyl. after 6 months)
- Verification through KC (including uncertainty)
- Register to BIPM CMC (as NMI)
- Validation of life time by periodical reproduction
- Economically not good (managing by national body)

Fully Automated Weighing System (2006)

"Maximum capacity 15 kg / Readability 1 mg

- Much easier, much faster, highly precise: round type
- Pressure, temperature, relative humidity recorded automatically
- Two or three cylinders measured serially (e.g., A-B-A-B, A-B-C-A-B-C, or A-C-A-C cylinders)
- Date, time, pressure, temperature, relative humidity are all automatically recorded by a customized program developed at KRISS

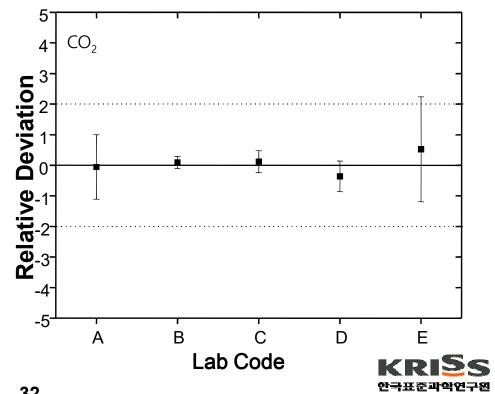
A Recent Change in the Comparator Balance (2007)

Mettler Toledo AG (Model XP26003L) Maximum capacity 26.1 kg / Readability 1 mg <u>× Therefore, now we can measure the weights of cylinders having a</u> volumetric capacity of up to 10 L. NIST, NPL NMISA, ASTAR/NMC NIM, LIPI ITRI/NMC

Better Standards, Better Life

Developed CRMs in KRISS

- CFC & PFC Gases : For semiconductor companies CFCl₃, CF₂Cl₂, CF₃Cl, C₂F₃Cl₃ ---- 1×10^{-2} mol/mol, 1-100 µmol/mol NF₃, C₃F₆, SF₆, CF₄, CHF₄, C₃F₈ ---- 1×10^{-2} mol/mol, 1-100 µmol/mol
 - Green House Gases : $CO_2 \quad --- \quad 1 \times 10^{-2} \text{ mol/mol}, 380 \text{ µmol/mol}$ $CH_4 \quad --- \quad 1 \times 10^{-2} \text{ mol/mol}, 1.8 \text{ µmol/mol}$ $CO_2 + CH_4 + N_2O \quad ---- \text{ mixture at ambient level}$ $CFCs, PFC, NF_3, SF_6 ---- \text{ ambient level}$
- Air Pollution Monitoring Gases : CO, NO, SO₂, VOCs, Aldehydes, (O₃ Primary calibration system)


Primary Reference Gas Mixture for Green House Gases

substance	Range of Certified Values	Uncertainty (k=2)	ref
CO ₂	above 10 μmol/mol	0.06 at 380 µmol/mol	CCQM-K52, K120
CH ₄	above 100 nmol/mol	0.002 at 1.9 µmol/mol	CCQM-K82
N ₂ O	above 50 nmol/mol	0.24 at 320 nmol/mol	CCQM-K68
SF ₆ NF ₃	above 6 pmol/mol for SF_6 above 1 nmol/mol for NF_3 (0.5 pmol/mol after 2011)	0.06 at 6 pmol/mol for SF_6 0.01 at 1 nmol/mol for NF_3	CCQM-K15
PFCs	above 10 pmol/mol for CF_4 above 100 µmol/mol for C_2F_6 (50 pmol/mol after 2011)	0.1 at 10 pmol/mol for CF_4	CCQM-K15
HFCs	above 30 pmol/mol for HFC23	0.15 at 50 omol/mol	CCQM-K84
CFCs	µmol/mol~50 pmol/mol for CFC 11,12,113	0.5 at 50 pmol/mol	CCQM-K84

Proficiency Test for Specialty Gas Companies

- PT provided by official body
- Round Robin Test
- 1:1 comparison (bilateral, trilateral)

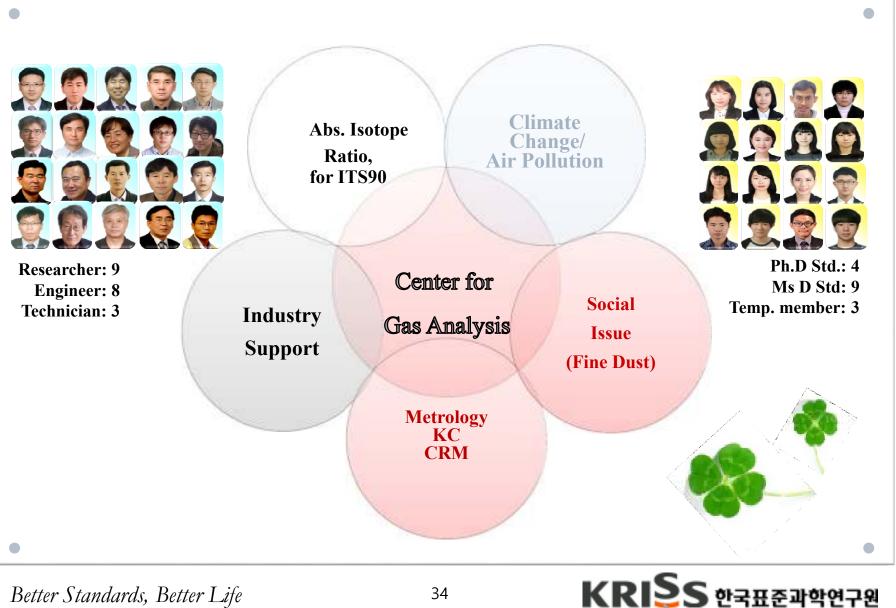
Gas Analysis in IT industry by KRISS

Developing New product: Organic Light Emitting Display

QC: Process Control

Reduction of GHGs:

Gas Scrubber


New Technology: Backlight & PDP

Gas Analysis : Quality control of products, development of new product & problem solving in process

Better Standards, Better Life

Human Resources of Center for Gas Analysis

Better Standards, Better Life

34

Technology Innovation & Sustainable Development by Gas Analysis Center

KRP